
NATURAL RESOURCE M ODELING
Volum e 28, Number 1, February 2015

ANALYSIS OF SENSITIVITY AND UNCERTAINTY
IN AN INDIVIDUAL-BASED MODEL OF A THREATENED

WILDLIFE SPECIES

BRUCE G. MARCOT*
USDA Forest Service, Pacific Northwest Research Station, 620 S.W. Main Street, Suite 400,

Portland, Oregon 97208
E-mail: bmarcot@fs.fed.us

PETER H. SINGLETON
USDA Forest Service, Pacific Northwest Research Station, 1133 N. Western Avenue, Wenatchee,

Washington 98801
E-mail: psingleton@fs.fed.us

NATHAN H. SCHUMAKER
US Environmental Protection Agency, Environmental Research Lab, 200 SW 35th Street,

Corvallis, Oregon 97333
E-mail: schumaker.nathan@epa.gov

Abstract. Sensitivity analysis—determination of how prediction vari-
ables affect response variables—of individual-based models (IBMs) are few
but important to the interpretation of model output. We present sensitiv-
ity analysis of a spatially explicit IBM (HexSim) of a threatened species,
the Northern Spotted Owl (NSO; Strix occidentalis caurina) in Washington,
USA. We explored sensitivity to HexSim variables representing habitat qual-
ity, movement, dispersal, and model architecture; previous NSO studies have
well established sensitivity of model output to vital rate variation. We de-
veloped “normative” (expected) model settings from field studies, and then
varied the values of � 1 input parameter at a time by ±10% and ±50% of
their normative values to determine influence on response variables of pop-
ulation size and trend. We determined time to population equilibration and
dynamics of populations above and below carrying capacity. Recovery time
from small population size to carrying capacity greatly exceeded decay time
from an overpopulated condition, suggesting lag time required to repopu-
late newly available habitat. Response variables were most sensitive to input
parameters of habitat quality which are well-studied for this species and con-
trollable by management. HexSim thus seems useful for evaluating potential
NSO population responses to landscape patterns for which good empirical
information is available.

Key Words: Individual-based model, HexSim model, sensitivity anal-
ysis, uncertainty analysis.

1. Introduction. The response of rare or threatened species to real or po-
tential landscapes with fragmented habitat is often assessed by use of individual-
based models (IBMs) that simulate habitat selection, movement, reproduction, and
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mortality of individual animals in a landscape (Lamberson et al. [1994], Akçakaya
et al. [2004], Heinz et al. [2006], Harrison et al. [2011]). When properly calibrated,
IBMs can provide systematic and useful insights into processes including animal dis-
persal, exploration for resources, and habitat selection behaviors (Rupp and Rupp
[2010], Latombe et al. [2011], Watkins and Rose [2013]), as well as of population
vulnerability (Griebeler [2011]), disease transmission (Ramsey and Efford [2010]),
and even plant population dynamics (Adams et al. [2011]). However, it is our expe-
rience that few sensitivity analyses have been conducted in a thorough, structured
manner on IBMs, which prompted this study.

Sensitivity analysis of population models, including IBM type models, is highly
useful for model application to management (Cross and Beissinger [2001], Aberg
et al. [2009], Confalonieri et al. [2010], McElhany et al. [2010]). Managers may wish
to know the degree to which model results arise from uncertainties in model param-
eters and architecture, or from potential behavior of the real-world system, and also
which input parameters—especially those controllable or affected by management
actions—have greater influence on outcomes.

One IBM used in a variety of species conservation projects is HexSim, a spatially
explicit movement and dispersal modeling shell (Schumaker [2013]). HexSim runs
on terrestrial landscapes tiled with regular hexagons and user-supplied details on
habitat quality, species life histories, and other parameters. Recent applications of
HexSim include analysis of habitat fragmentation effects on wolves (Canis lupus) in
Manitoba (Stronen et al. [2012]) and on Ord’s kangaroo rats (Dipodomys ordii) in
Alberta, Canada (Heinrichs et al. [2010]), and evaluation of threatened populations
of Northern Spotted Owls (NSO; Strix occidentalis caurina) in a suite of hypothet-
ical landscapes varying in absolute habitat area and size and spacing of old-forest
habitat patches in the Pacific Northwest, USA (Marcot et al. [2013]). Heinrichs et al.
([2010]) included a brief summary of sensitivity analysis, reporting that extinction
risk was largely insensitive to variations in population and habitat quality param-
eters, and most sensitive to decreases (but not increases) in vital rates of survival
and reproduction. Other applications of previous versions of HexSim (known as
PATCH) are many (see McRae et al. [2008]). HexSim is also being used in an ongo-
ing study of how NSO populations could respond to various scenarios for managing
fire, fuels, and vegetation in dry, fire-prone forests of the eastern Cascade Mountains
in Washington and Oregon, USA (sites.google.com/a/pdx.edu/vegetation-fire-owl/;
also see Singleton [2013]).

In a ground-breaking application, HexSim was recently used by U.S. Fish and
Wildlife Service (USFWS) in a multimodel approach to map and designate critical
habitat of NSOs for the species’ recovery (USFWS [2011, 2012]) under the U.S.
Endangered Species Act (Schumaker et al. [2014]). The credibility, efficacy, and un-
certainty of USFWS’ critical habitat designation for recovering NSO populations,
and of the implications from other studies also using HexSim for managing NSOs
and other species, lies, in part, in the validity of HexSim in realistically depicting
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population response (size and trend). This entails ensuring that movement, habitat
selection, and demographic parameters have been adequately identified and cali-
brated in the model, and further, that the basic response behavior and sensitivity
structure of the model are known.

Sensitivity analyses have been conducted on few other IBMs and patch occupancy
models (Curtis and Naujokaitis-Lewis [2008], Miller [2012]) and few have been pub-
lished on HexSim. Rustigian et al. ([2003]) conducted sensitivity analyses of the
PATCH model for a salamander species, but the algorithms used in HexSim have
advanced over that earlier version.

The objective of our work was to develop methods for conducting a sensitivity
analysis of an IBM and to explore in detail the sensitivity structure of a specific IBM
model of NSO populations, which have been declining in recent decades largely from
loss of habitat due to wildfire and logging and from competition with other species
(Forsman et al. [2011], Clark et al. [2013], Yackulic et al. [2012]). The methods we
present are general in scope and can be used for evaluations of other species and
with other IBMs. Without a detailed sensitivity analysis, high uncertainty remains
as to which variables of management control could most influence the outcome of
population conditions (size, trend), and how the model can be made more reliable
by identifying variables of major influence that could be prioritized for empirical
study, particularly related to habitat quality as affecting successful reproduction,
habitat distribution as affecting dispersal and colonization, and carrying capacity
as affecting population recovery. Conducted correctly, sensitivity analysis has high
practical value for prioritizing management actions and inventory, monitoring, and
research activities.

2. Methods. We used HexSim to develop normative (expected reference
conditions, sensu Jay et al. [2011]) and sensitivity analysis (variation in expected
conditions) model runs of IBMs of NSO populations. HexSim is a highly flexible sim-
ulation framework within which wildlife and plant models are constructed. HexSim
models can range from extremely simple to highly complex, and from abstract and
hypothetical to detailed and realistic. The software is designed on a “queuing the-
ory” or sequential-event architecture (Gross et al. [2008]) for simulating terrestrial
wildlife population dynamics ranging from simple to intricate. In creating a HexSim
model, the user defines a temporal event space in which movement, survival, re-
production, and other events occur in a defined sequence for each time iteration.
Most of these life history events in a HexSim model can be influenced by spatial
attributes such as dispersion of habitat and barriers to dispersal.

2.1. Study area. We developed our model of NSO populations in HexSim
v2.4 as a key part of a risk analysis to advise forest managers and decision-makers
on potential effects on NSO populations from alternative scenarios for managing
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vegetation, fire, and fuels on national forests of the eastern Cascade Mountains. We
conducted model runs for the portion of the Okanogan-Wenatchee National Forest
within the range of the NSO in the eastern Cascade Mountains of Washington, USA
(Supporting Information Appendix A). This 1.62 million-ha area is characterized
by complex, mountainous topography. Elevations range 240–2,750 m and the upper
elevation limit of NSO nesting habitat in this landscape is approximately 1,600 m.
Vegetation types occupied by NSOs in this area range from moist- to dry-mixed
conifer forest (Lillybridge et al. [1995], Johnson and O’Neil [2001]). Within the study
area, ongoing research on NSOs, including presence surveys and demographic mon-
itoring, began in 1989 (Anthony et al. [2006], Singleton et al. [2010], Forsman et al.
[2011]). Information from these efforts provided the empirical data for parameter-
izing our HexSim population models (Raphael et al. [2013], Singleton [2013]).

2.2. The normative model. HexSim operates by specifying parameters for
selection and use of habitats across the landscape, and for survival, reproduction,
and movement. NSO habitat in the model refers to conifer forest vegetation domi-
nated by large diameter trees with closed canopies used by NSOs for nesting, roost-
ing, and foraging (Singleton [2013]). The habitat map we used was derived from
observed habitat characteristics at NSO nesting and foraging pair activity centers
in Okanogan-Wenatchee National Forest (Singleton [2013]). Singleton ([2013]) used
logistic regression to characterize topography (slope and topographic position) and
vegetation (mean tree size, dominant tree species, and overstory canopy closure) at
the NSO activity centers, and mapped three habitat use categories: poor habitat
(areas currently used by NSOs less frequently than available within their elevation
range: total 923,912 ha), moderate habitat (use approximately in proportion to
availability: total 395,591 ha), and good habitat (use exceeding availability: total
117,737 ha).

Each 86.6-ha hexagon in the tiled HexSim habitat map, totaling 40,138 hexagons,
was then assigned a habitat value based on the amount of good and moderate habi-
tat within the hexagon. We used Singleton’s (2013) comparison of the total resource
values from hexagons surrounding documented NSO activity centers to the analy-
sis area landscape at two scales, to represent the breeding season core home range
area in our HexSim model (6 hexagons, or approximately 500 ha) and annual home
range (23 hexagons, or approximately 2,000 ha). Resource threshold settings, rep-
resenting habitat quality levels contributing to establishment of an NSO territory,
were set to reflect these patterns of habitat abundance around documented NSO
activity centers. Also, high elevation areas (>1,800 m) without forest vegetation
(predominantly alpine rock and ice) and a large lake (Lake Chelan) were consid-
ered to be barriers to NSO movement, and denoted in an NSO movement barrier
map overlaid onto the habitat map (total 33,176 ha).

We parameterized the model with 15 input parameters (Table 1) representing
female-only demography with 4 stage classes (juvenile, first-year, second-year, and
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FIGURE 1. Annual event sequence of Northern Spotted Owls as modeled in HexSim. As
an individual-based model, HexSim simulates survival, movement, habitat selection, repro-
duction, and mortality of individual organisms as incremental events during a given time
step.

third-year and older); paired (territory-holding, nesting, reproductive adult) birds
and unpaired (nonterritorial) “floater” birds; and 3 habitat quality (resource use)
classes (low, moderate, high) based on analysis of empirical habitat selection behav-
iors (Singleton [2013]). We included consideration of floater birds because previous
NSO HexSim modeling suggested that they could play an important role in popula-
tion persistence (Marcot et al. [2013]). Movement in the normative model consisted
of stochastic dispersal of juvenile NSOs, prospecting for high-quality habitat by
which to establish a breeding territory, and exploring for habitat to establish a
foraging home range (Table 1; Supporting Information Appendix B). Prospecting
and exploration are handled in HexSim simultaneously, and all movement is influ-
enced by habitat quality, distance and stopping criteria, and autocorrelation in the
direction of individual movement path segments.

The event sequence for each simulated year includes stochastic survivorship and
reproduction by stage and resource classes, and dispersal and floater movement
to prospect for suitable unoccupied habitat and to establish territories and home
ranges (Figure 1). Survivorship and reproduction schedules in the model draw from
probability distributions calibrated to field data (Forsman et al. [2011]), and all
movement events in the model are stochastic and bound by specified value ranges
or algorithms parameterized to emulate known NSO movement dynamics (Marcot
et al. [2013]).

We established normative model settings (Table 1) in HexSim calibrated to empir-
ical data on NSO biology and habitat selection, and, for sensitivity analysis, we ran
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TABLE 2. Response variables calculated from results of the HexSim simulations of Northern
Spotted Owl (NSO) populations on Wenatchee National Forest, Washington, USA, with results

from the normative model (n = 25 replications, each running 150 simulated years).

Values from the normative
Variable code Description model, mean ± 1SD

EndMeanTerritories Mean number of territory-holding
adult female NSOs in the final
decade.

187.3 ± 6.1

EndMinTerritories Minimum number of
territory-holding adult female NSOs
over the entire simulation.a

161.4 ± 5.7

EndMeanFloaters Mean number of
nonterritory-holding floater NSOs in
the final decade.

107.4 ± 7.7

EndMinFloaters Minimum number of
nonterritory-holding floater NSOs
over the entire simulation.a

77.2 ± 5.00

SimLamb Lambda calculated over the entire
simulation period.a

1.022 ± 0.052

a Excluding the initial (usually 50-year) start-up bias period.

the model on static, current habitat conditions (Singleton [2013]) to eliminate vari-
ation from changing landscapes. Input parameters used in our NSO HexSim model
(Table 1) specified initial population size, model run time, and stochasticity, as well
as a host of biological parameters pertaining to habitat extent, use of various levels
of habitat quality to establish home ranges and breeding territories, and distances
and geometries of movement through the landscape for dispersal, prospecting, and
exploration of unoccupied habitat.

We ran simulations over 150-year periods, ignoring the first 50 years as the “start-
up bias” or model equilibration phase (see Results below; also as determined by
Singleton [2013] for each of 25 replicates per iteration). We calculated 7 response
variables of population size and trend over the final 100-year simulation period
(Table 2; Singleton [2013]). Response variables included mean and minimum
numbers of breeding NSO territories and of nonbreeding, nonterritorial floater
NSOs; and population trends (λ) of breeding NSO territories (N) across each full
simulation period, calculated as simulation λ = [mean N in the final decade] /
[mean N in the first decade].
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FIGURE 2. Results of running the Northern Spotted Owl (NSO) HexSim model under nor-
mative settings (Table 1) showing the mean and range of the number of NSO territories (dark
blue line and light blue band) and the running standard error (SE) of NSO territories (green
line) over simulation time, over 25 replicate runs.

2.3. Sensitivity tests of model parameters. We ran two general cat-
egories of sensitivity tests: (1) tests of varying the values of NSO biological
parameters, and (2) tests of general model architecture pertaining to evaluating
dynamics of recovery from low population levels or deflation from high population
levels.

In the tests of NSO biological parameters, we did not evaluate sensitivity to vary-
ing survivorship and reproduction, in part because these parameters consisted of
complex, conditional matrices and not simple, single values. For example, the NSO
survival rates varied stochastically as a function of stage class, resource use class,
and other factors. Also, other analyses have already established high sensitivity
of population size and trend to survivorship and reproduction (Lamberson et al.
[1994], Marcot et al. [2013]). Many years of field study have provided estimates of
NSO vital rates (survival and reproduction) with nearly unprecedented accuracy
(Forsman et al. [2011]), and sensitivity to vital rate stochasticity can be analyzed
separately (e.g., Wisdom et al. [2000], Aberg et al. [2009]). Instead, our analy-
sis focused on lesser-known parameters pertaining to habitat quality, distribution,
movement, and carrying capacity.

We first ran 10 sensitivity analysis scenarios (listed in Figure 3) in which
the values of 15 input parameters (Table 1) were each varied by ±10% (which
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FIGURE 3. Results of running 10 sensitivity analysis scenarios in HexSim, selectively varying
15 input parameters by ±10% (high, low) and ±50% (maximum high [MaxHigh]], maximum
low [MaxLow]) of their normative values (Table 1). The X’s denote which input parameter
was varied in each scenario. Numbers are the absolute differences of each response vari-
able outcome; higher values denote greater sensitivity. The circles are blackened by 20%
increments (see key) of the normalized value of each sensitivity analysis scenario’s response
variables, that is, their relative sensitivity outcome across each row. As an example from
scenario Sens 10, EndMeanTerritories was 176.8 territories greater under the MaxHigh value
of the input variable MaxEplAHR than under its MaxLow value. This outcome compares
to all other scenarios in the same row as 100·(176.8/0.8)/(0.8/381.3) = 46%, for which its
“tornado” circle icon is half filled (see key). In this way, sensitivity of each response variable
to each scenario could be directly compared as a percentage of the overall variation in the
response.

resulted in “high” and “low” outcomes, respectively) and ±50% (“maximum high”
and “maximum low” outcomes) of their normative values in a test of nominal
range sensitivity (sensu Morgan and Henrion [1990]), and we recorded the values of
each response variable averaged over 25 replicate runs. Initial model tests confirmed
that 25 replications provided fully stabilized variance in response variable outcomes
(Singleton [2013]). The 15 input parameters pertain to NSO population size,



46 B. G. MARCOT, P. H. SINGLETON, AND N. H. SCHUMAKER

parameters affecting colonization and home range area as influenced by habitat
quality, and movement and dispersal as influenced by habitat distribution. We then
calculated the absolute difference between high and low, and between maximum
high and maximum low (H and L, respectively), outcomes for each response vari-
able outcome n, and presented these differences in a pie-dot version of “tornado
diagrams” that depict the relative sensitivity of each response variable to each in-
put parameter (Goodwin and Wright [2004]). Relative sensitivity was calculated on
a 0–100% scale as ( n

L )( L
H ) · 100 (see Figure 3 for example).

Some of these sensitivity analyses entailed covarying, as in deterministic joint
analysis (Morgan and Henrion [1990]), 2 input parameters because of their connec-
tions within the HexSim model structure (Table 1) and to determine interaction
effects by use of ANOVA tests. We also separately tested interaction effects of co-
varying 3 input parameters (see Table 1) by ±10% of their normative values by using
the built-in sensitivity analysis function in HexSim. We selected the 3 parameters—
minimum range resource, hexagon range value, and maximum explored area—out
of the fuller set as representative of how the owls view and explore for habitat
quality and establish territories. Our sensitivity metrics follow what Morgan and
Henrion ([1990]) termed normalized sensitivity, based on being normalized by the
percent variation on the input parameters.

In sensitivity tests of general model architecture, we varied simulation run time
(number of time steps in each replicate), and initial population size (number of
adult female NSOs at time step 0). We analyzed simulation run time and effects of
overpopulation (initial numbers of NSO breeding females greatly exceed carrying
capacity) and underpopulation (far less than carrying capacity) as free and forced
responses (Reddy [2011]) by determining transition times for the running standard
errors (SE) of each response variable to equilibrate to within 5% SE. The purpose
of this analysis was to determine recovery time (to carrying capacity) from over-
population and from underpopulation, and if the two recovery times differed. We
varied the starting normative population size (187 NSOs) by initially overpopu-
lating the landscape (with 500 NSOs; free response) and initially underpopulating
the landscape (with 10 NSOs; forced response) and observing the time needed to
decrease or increase, respectively, to the normative carrying capacity level. Results
of these tests helped determine the temporal dynamic behavior of the model, to
ascertain the start-up bias period during which the model was reaching relative
equilibrium given its input parameters, and to provide insights into how quickly
NSO populations can respond to an increase or decrease in carrying capacity when
habitat remains stable.

3. Results.

3.1. The normative model. The normative model resulted in an average
long-term population on Okanogan-Wenatchee National Forest of 187 NSO breeding
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territories and 107 nonterritorial, nonbreeding floater NSOs, with a small degree of
variation around the population average of not less than 161 breeding territories
over the course of 100-year simulations (Table 2, Figure 2). Average long-term
population trends were stable (Figure 2), with simulation λ ≈ 1.0 (Table 2).

3.2. Sensitivity to varying Northern Spotted Owl biological parame-
ters. In general, we found that numbers of NSO territories and floaters were most
sensitive to variations in 4 parameters (MinRngRes, ResTargs, ResTrtThMod, and
ResTrtThHi; see Table 1) representing habitat quality, and somewhat sensitive to
2 parameters (HexRngEl and MaxEplAHR) representing area explored for estab-
lishing home ranges (Table 3, Figure 3). There was consistently low sensitivity to
other input parameters, notably the coefficients describing movement path length
and dynamics (e.g., parameters PathLenBPro, PathLenBDis, RepulMinPrs, Repul-
MinDis; Figure 3, Table 1). We found that sensitivity patterns were consistent at
the two levels of varying input parameters (±10% and ±50%; Figure 3). Interest-
ingly, there were no significant main effects found for measures of NSO population
trend (response variable SimLamb, Table 3).

We also ran 27 sensitivity analysis scenarios in which 3 input parameters (HexRn-
gEl, MinRngRes, and MaxEplAHR) were first set to their normative values and
then varied ±10%, individually and in tandem. From these analyses, we found that
numbers of NSO territories and floaters were most sensitive to the higher (+10%)
value of MinRngRes and the lower (–10%) value of MaxEplAHR, whereas sensitiv-
ity of the 3 NSO population trend response variables was mixed among higher and
lower values of all 3 input parameters (Figure 4). Results of ANOVA tests (Table 3)
suggest that the response variables are not necessarily more sensitive to covariation
of these 3 input parameters, particularly where increase of one parameter might
offset the response generated by decrease of another parameter.

3.3. Sensitivity to general model architecture. Although we ran some
simulations out to 500 years, it was apparent from the 150-year normative runs,
based on the static distribution of current habitat, that population size and trend
equilibrated (SE<0.05) by year 50, with very small standard deviations and low
stochasticity among repliacte runs (Figures 2 and 3). These findings established
that, for sensitivity tests and further project use, we could limit simulations to
150 years and dismiss the first 50 years as the period of start-up bias. The specific
period of start-up bias might vary, however, with other species models, but in
general is a characteristic of this type of time-dynamic simulation model.

We found that populations, following the start-up bias period, more quickly equi-
librated to carrying capacity (187 NSOs) under the free response (Figure 5) than
under the forced response (Figure 6) scenario. In the forced response scenario,
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FIGURE 4. Results of 27 sensitivity analyses covarying 3 values each of 3 input parameters
(see Table 1). Under the input parameters, arrow directions denote normative values (yellow
horizontal arrows), and +10% (green upward arrows) and –10% (red downward arrows) of
the normative values. Values under the response variables are absolute differences between
their normative model values (Table 2) and the results from the input parameter values.
Horizontal bars represent the value in each cell, normalized for each response variable (yellow
for population size variables, blue for population trend variables); high values and longer
bars denote greater relative sensitivity of the response variable to the values of the input
parameters in that row.
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TABLE 3. ANOVA results on sensitivity tests of covarying three input parameters (Table 1) in
the HexSim Northern Spotted Owl (NSO) model, on numbers of NSO territories and floaters

(Table 2). Values are F-ratios and p-values in parentheses. Greater levels of statistical significance
(smaller p-values) suggest greater sensitivity of the response variable to the input parameters.

Response variable

Source (input
parameters) df EndMean EndMin EndMean EndMin SimLamb

Territories Territories Floaters Floaters

HexRngEl 2 12.30 4.91 0.66 2,423.56 0.05
(0.198) (0.304) (0.656) (0.014b ) (0.952)

MinRngRes 2 50,595.12 1,673.36 50.59 5,673.22 1.92
(0.003b ) (0.017b ) (0.099a ) (0.009b ) (0.455)

MaxExplAHR 2 76,539.92 3,667.66 2,940.95 625,064.48 1.96
(0.003b ) (0.012b ) (0.013b ) (0.001b ) (0.451)

HexRngEl x
MinRngRes

4 157.80 1.45 13.49 598.72 0.77
(0.060a ) (0.547) (0.201) (0.031b ) (0.683)

HexRngEl x
MaxExplAHR

4 16.70 3.76 3.80 1,739.74 0.82
(0.181) (0.367) (0.365) (0.018b ) (0.668)

MinRngRes x
MaxExplAHR

4 218.53 11.30 0.59 208.83 1.02
(0.051a ) (0.219) (0.738) (0.052a ) (0.622)

HexRngEl x
MinRngRes x
MaxExplAHR

8 160.50 4.17 10.92 2,209.93 1.78
(0.061a ) (0.363) (0.230) (0.016b ) (0.525)

a p < 0.10.
b p < 0.05.

populations did not reach carrying capacity until approximately year 75, whereas
they settled down to carrying capacity in the initially overpopulated free response
scenario by year 25. However, under both forced and free response scenarios, pop-
ulations reached steady-state conditions at carrying capacity by year 150, with
statistically significant, slightly lower minimum population levels (response vari-
able Ending Minimum Territories, Figure 7; ANOVA F = 8.3646, df = 74, p <
0.001) and slightly higher trends (response variable Simulation Lambda, Figure 7;
ANOVA F = 22.485, df = 74, p << 0.001) over the full simulation period under
the free response scenario. We also hypothesize from these results that, as initial
population size approaches carrying capacity, the difference in recovery time be-
tween over- and underpopulation levels would converge.
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FIGURE 5. Results of running the Northern Spotted Owl (NSO) HexSim model under a
“free response” scenario in which the landscape is initially greatly overpopulated by NSO
territories and then allowed to equilibrate. Solid lines are mean values, dotted lines are ±
1SD, over 25 replicate runs.

4. Discussion.

4.1. Implications for Northern Spotted Owl modeling and manage-
ment. We identified that NSO population size and trend are sensitive largely
to parameters representing habitat quality, and less sensitive to NSO movement
distance and dispersal behavior. This is good news for the manager who may be
concerned about uncertainty, in that habitat quality is well studied and better
known than are other parameters in the model, particularly regarding owl move-
ment dynamics. This suggests confidence in model outcomes if the habitat quality
parameters are accurate and correctly depicted in the model structure. Further,
habitat quality is a factor that, to an extent, can be controlled through manage-
ment of vegetation, fire and fuels, and patterns of land ownership. This outcome
is important also because, in general, much of conservation planning is focused on
evaluating the implications of landscape patterns, such as resulting from alternative
reserve designs or conservation strategies, on population processes.

We also found that the forced response takes substantially longer to reach NSO
population equilibration than does the free response, suggesting that colonizing
vacant habitats is relatively time consuming. This made sense biologically, as birds
would more quickly die out if suitable, unoccupied habitat was not available as un-
der the overpopulated conditions of the free response scenario, than birds being able
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FIGURE 6. Results of running the Northern Spotted Owl (NSO) HexSim model under a
“forced response” scenario in which the landscape is initially greatly underpopulated by
NSO territories and then allowed to equilibrate. Solid lines are mean values, dotted lines are
± 1SD, over 25 replicate runs.

to disperse, prospect, and explore for habitat across unsuitable environments with
dispersal barriers, as with the underpopulated conditions of the forced response
scenario. The implications of this are to provide more realistic expectations for lag
times of NSO population expansion to discover and occupy habitats newly avail-
able from forest growth or from elimination of their primary competitor. Also, the
lack of significant effects found for NSO population trend from the three-parameter
variations (Table 3) is not unexpected. That is, over the long run times, the popula-
tions equilibrated to whatever carrying capacity was available under each scenario,
given the variants in input parameters.

4.2. Additional sources of model variation, sensitivity, and uncertainty.
Several other causes of model variation and sensitivity have been analyzed else-

where, in particular effects of including or omitting NSO dispersal barriers on
the landscape, effects of Barred Owls (Strix varia; a key competitor) on NSO
population size and trend (Wiens et al. [2014]), potential contribution of nonfederal
lands as habitat (Singleton [2013]), and size and spacing of habitat blocks (Marcot
et al. [2013]). Management essentially cannot control NSO dispersal barriers of el-
evation and large water barriers. On the other hand, controlling Barred Owls is an
option being implemented under USFWS’ Northern Spotted Owl Recovery Plan
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FIGURE 7. Results of sensitivity analysis in HexSim of number of Northern Spotted Owl
(NSO) territories or floater (nonterritorial) individuals and population trend (response vari-
ables, Table 2) under free response, forced response, and normative model settings (varying
the model only by the initial number of NSO territories). Results represent 25 replicate runs
per scenario.

(USFWS [2011]). Research on Barred Owls within the modeling area included a
radio-telemetry study conducted from 2003 to 2006 (Singleton et al. [2010]), and
Singleton ([2013]) reported major adverse effects on NSOs from Barred Owls. We
would anticipate that a two-species IBM model, such as including Spotted and
Barred Owls in HexSim, might result in somewhat different sensitivity outcomes
than from a single-species model, such as resulting from shifts in habitat and re-
source selection functions due to the presence of a strong competitor.

Other sources of model variation and sensitivity may pertain to the specific algo-
rithms and code structure used in HexSim as compared to other IBMs. We support
such multimodel evaluations (e.g., Ko et al. [2011]) as one way to evaluate sensitiv-
ity across different modeling platforms. Marcot et al. ([2013]) compared an earlier
IBM to a HexSim analysis of NSO population response to various habitat patch
sizes and spacing configurations, and found highly consistent results across the two
models. This lends confidence to our modeling the behavior of NSOs to habitat
dispersion.

Sources of model uncertainty, in addition to those discussed above, also pertain to
the many assumptions that underlie such complex IBMs as HexSim. These include
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assumptions relevant to the algorithms used in HexSim for movement dynamics
(described in Marcot et al. [2013]). Also, we developed a female-only model which
does not account for pair interaction and Allee (behavioral) effects on population
vital rates, often associated with small population size and low density (Keitt et al.
[2001]). Sensitivity of outcomes to these and other assumptions could be explored by
developing alternative and more complex model structures in HexSim or other IBM
modeling shells. However, increasing model realism entails greater model complexity
and often many additional input parameters, and additional model complexity can
confound interpretation of model results. At some point, sensitivity results may
become more influenced by model complexity than by real-world dynamics.

Whereas some of the parameters we examined in this study are unique to HexSim,
any spatially explicit IBM of a territorial species will have analogs. Our study will
have obvious utility for developers of HexSim models, but a much broader spec-
trum of the research community should benefit as well. It has been uncommon for
users of sophisticated population modeling platforms to perform sensitivity anal-
yses of errors in model parameters that are less well known or understood than
survival and reproduction rates, such as with parameters describing movement,
exploration, and site selection. Our study focuses specifically on such extended
sensitivity analyses and illustrates procedures that can be used with any complex
simulation model.

4.3. Sensitivity analysis provides insights into uncertainty. Model sen-
sitivity analysis can provide insights into four main aspects of uncertainty (Benke
et al. [2008], Regan et al. [2002]). (1) Parameter value uncertainty pertains to un-
certainty over the exact values of parameters and how they are represented such as
by central tendency values, values depicting spatial variation, temporal variation,
or inter-parameter relationship variation. We tested the implications of varying
NSO biological parameters and discovered which response variables were most sen-
sitive to input parameters, particularly input parameters not addressed in previous
sensitivity analyses.

(2) Model structure uncertainty includes uncertainty over parameter selection,
parameter relationships, and algorithms used. Model structure uncertainty is one
facet of what is more generally called epistemic uncertainty (Regan et al. [2002],
Aven [2003]), that is, uncertainty over how the system itself is structured and works.
We tested the sensitivity implications of the general model architecture in part by
determining the start-up bias period and through model dynamics of free and forced
responses.

Other aspects of uncertainty include (3) inherent system variability which is the
degree to which the system itself that is being modeled or analyzed, or parameters
thereof, varies over space or time randomly or in response to conditions not included
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in the model or analysis. Inherent system variability is sometimes referred to as
aleatoric uncertainty (Aven [2003]). Additional experiments with our HexSim NSO
model will provide insights into effects of inherent system variability, now that we
understand and can parse out the sensitivity response from parameter value and
model structure uncertainty.

A final area of uncertainty is (4) measurement error (observational error, exper-
imental uncertainty) of input parameter values, of their correlations and relation-
ships, and of algorithms used in the model. Measurement error tends to reduce
precision and accuracy, and increases bias, of input parameter values and thus of
the response variables and overall system response. Again, our sensitivity analyses
of NSO biological parameters and model architecture revealed the most influential
input parameters which would be prioritized for further study if needed to reduce
their measurement error.

4.4. Other sensitivity analysis methods. Our particular analysis of model
sensitivity is but one of a number of methods and metrics. For example, the sensi-
tivity metric of Jørgensen ([1986], as used by Rustigian et al. [2003] on a PATCH
model and by Pulliam et al. [1992] on another IBM) calculates sensitivity as vari-
ation in the response variables normalized by the absolute difference in the value
of a single, given input parameter varied by ±25% of its normative value. We
did not use this metric because our analyses pertained to covarying variables and
because we wanted two levels of variation of the input parameters to test for con-
sistency of sensitivity responses over a wider range of input values. We feel that
our approach provides greater parity in comparing the influence of response vari-
ables with vastly different measurement units (e.g., numbers of territories versus
population trend lambda values), and ours also accounts for covariation of input
parameters.

Other sensitivity metrics also pertain to varying only a single parameter at a
time, such as with Sobol’s sensitivity analysis (Nossent et al. [2011]) and the Mor-
ris method (e.g., as used by Confalonieri et al. [2010], Vinatier et al. [2013]). Benke
et al. ([2008]) conducted sensitivity analyses by combining differential error analysis
and Monte Carlo simulation with stochastic and deterministic sensitivity analysis.
Curtis and Naujokaitis-Lewis ([2008]) developed a program (GRIP) to conduct sen-
sitivity analysis of spatial and nonspatial input parameters of population viability
analyses from an IBM (RAMAS Metapop). McCarthy et al. ([1995]) used logistic
regression; Saltelli et al. ([2000]) used global quantitative sensitivity analysis meth-
ods; Ravalico et al. ([2010]) used an approach called Management Option Rank
Equivalence, which is a numerical optimization for decision analysis; and Neubert
and Caswell ([2000]) applied formulas for analyzing sensitivity and elasticity of
invasion speed to changes in demographic and dispersal parameters of invasive
species. The performance of IBMs also depends on their time-step updating



SENSITIVITY ANALYSIS OF AN INDIVIDUAL-BASED MODEL 55

algorithms and other aspects of the underlying structure and code (Caron-Lormier
et al. [2008]). Beaudouin et al. ([2008]) demonstrated how IBM parameter values
can be selected and calibrated based on empirical data by using sensitivity analysis.
Clearly, many approaches are available and usually tailored to specific model con-
structs and evaluation needs. We developed our approach to best match the type
and purpose of our NSO IBM model. If appropriate, as with multimodel analyses,
conducting sensitivity analyses with different metrics and approaches also may pro-
vide useful insight into the degree and consistency by which model responses are
influenced by input parameters.

5. Conclusions. We also have demonstrated an approach to analyzing sen-
sitivity to variations in input parameter values and to model architecture and
dynamics. In our NSO HexSim model, our findings provide support that NSO re-
sponse seems most sensitive to parameters on habitat selection and resource use for
which we probably have the best empirical data and understanding, which can be
controllable by management, and which provides the most important information
for conservation planning. We now have greater confidence as our specific model
and its variants are used for planning conservation and recovery of NSOs, and
that our approach can be applied for modeling of other threatened or imperiled
species.

We provide a general framework and methodology for conducting sensitivity anal-
ysis of a specific IBM, HexSim that borrow from and extends existing approaches.
Although specific results may vary with other IBMs depending on their structures
and parameter relationships, this methodology will have value for other IBM-based
studies, particularly applied to conservation assessment and planning.
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